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ABSTRACT
A  new  speaker  verification  platform  architecture  is 
introduced. Its design is focused on flexibility and ease of 
use, allowing for rapid generation of diverse experimental 
configurations. It uses a relational database and a modular 
structure that  give the platform versatility. An archetypal 
experiment  using  gaussian  mixture  models  with 
expectation  maximization  and  maximum  a  posteriori  is 
proposed and carried out. The results are within the range 
of  other  platforms'  performance.  Future  work  will  be 
oriented  towards  support  vector  machines  and 
combinations  of  support  vector  machines  with  gaussian 
mixture models.
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1. Introduction

Speaker  verification  is  the  process  of  confirming  the 
validity  of  a  user's  claimed  identity,  using  information 
extracted from the user's voice.

Several  methods are  available  for  this  purpose,  some of 
them being better under certain circumstances. A speaker  
verification  platform provides  the  tools  to  compare  the 
outcome of different methods, or combination of methods, 
in order to minimize the error rate.

Our  purpose  is  to  establish  a  new  speaker  verification 
research laboratory focused on applications in the Spanish 
language.  Due  to  the  fact  that  speaker  verification 
platforms  are  not  publicly  available,  one  of  the  tasks 
towards this goal is the development of a new platform.

A major  concern  with the  design of  speaker verification 
platforms is the preparation of experiments, as there is an 
extensive set of module combinations and recordings from 
which to select an appropriate subset. This makes preparing 
experiments a tedious and time-consuming task.

As  a  consequence,  our  approach  to  the  design  of  the 
platform was focused on providing a flexible and easy to 
use  environment.  Notwithstanding,  it  is  important  not  to 

trade performance for flexibility, so that the time saved in 
experiment planning is not wasted on data processing.

These  concerns  led  to  a  highly  modular  implementation, 
where  each  module  consists  of  one  or  several  of  the 
following  components:  database  management,  signal 
conditioning  (voice  activity  detection), feature  extraction 
(MFCC, LPC), feature modeling (GMM and GMM+UBM), 
normalization  (Z-Norm)  and  score  evaluation  (likelihood 
ratio).

These components were chosen so as to be able to run a 
baseline  experiment.  Such  an  experiment  consists  in 
generating  client  models  (and,  in  some  cases,  a  world 
model)  and  performing  tests  that  confront  clients  to 
impostors.

In this paper we shall discuss how modular flexibility and 
the  use  of  a  relational  database  can  save  time  and  other 
resources when preparing experiments and when expanding 
the platform's functionalities and algorithms.

2. Platform

2.1. Architecture

The  implementation  was  developed  in  C++,  due  to  the 
language's  high  processing  performance,  power  of 
abstraction,  availability  of  libraries,  and  easy  interfacing 
with other programming languages (especially C).

Following the UNIX methodology, modules were devised as 
simple  stand-alone  command-line  applications. 
Communication  among  models  was  implemented  using  a 
folder hierarchy with standardized configuration files.

A  common  problem  while  writing  applications  in  C 
language is that  programmers have to deal  with language 
issues,  and  may  lose  the  perspective  on  the  original 
problem.  To overcome this,  a  high  abstraction  layer  was 
written,  providing the basic  structures  to  be  connected  in 
order to develop new modules. This layer consists of a set of 
C++ classes. Of these, the two most important are features 
and  models. They  provide  dynamic  typing  to  allow  for 
model  and  feature  changes  at  run-time.  This  gives  each 
module  the  ability  to  behave differently depending on an 
input configuration file.



Classes  define  the  interface  between  algorithms  and 
modules. This interface is defined in such a way that it is as 
generic  as  possible,  and  all  algorithms  must  follow  the 
structure that it proposes.

The  feature class  allows  the  representation  of  generic 
features,  offering  methods  to  extract,  store  and  recall 
information in files.

Likewise,  the  model class  helps  to  represent  generic 
models, giving enough functionality to train, test, save and 
recover models.

Regarding feature extraction, the implementation of  mel-
frequency  cepstral  coefficients  (MFCC)  and  linear  
prediction filter coefficients  (LPC) was realized using the 
HTK library  [1].  The  Torch3 [2]  library  was  used  for 
implementing  gaussian  mixture  models  (GMM)  [3]  and 
support  vector  machines  (SVM)  [4].  Both  libraries  are 
working behind a wrapper that binds them to the proposed 
interface.

Matrix and vector algebra was performed using the C++ 
Boost library [5], due to its high efficiency [6] and level of 
abstraction.

2.2. Database

In order to allow the selection of recordings from a speech 
corpus,  a  relational  database  was  created,  including  all 
relevant data for each speaker (e.g. sex, age) and recording 
(e.g. environment, handset and duration).

The  database  was  implemented  using  SQLite  [7],  an 
embedded  relational  database  management  system  that 
uses the SQL language.

We counted with the SpeechDat II corpus, made available to 
us  through  a  collaboration  agreement  with  UPM 
(Universidad Politécnica de Madrid).  This is an annotated 
corpus of recordings, where annotations are stored in SAM 
label  file  format  [8].  In  order  to  populate  our  relational 
database (which not only provides independence from the 
corpus'  internal  structure  but  also  presents  an  expanded 
range of options for data selection) we produced the module 
called  databaseGen, that imports all relevant data into the 
SQLite environment.

SQLite  has  a  remarkable  flexibility  in  the formulation of 
selection  statements.   It  is  possible  to  define  limits  with 
logical  expressions  in  such  a  way  that  selections  can  be 
specified by duration and classified according to any desired 
characteristic. This gives, for instance, the ability to separate 
client model training and test data.

Furthermore,  SQLite  has  a  sub-query  feature  that  greatly 
enhances data filtering. For example, the amount of results 
for a selection of recordings can be limited independently 
for each speaker or group of speakers. Moreover, results can 
be filtered according to rules specified by other results.

2.3. Voice activity detection

The  SpeechDat  II  corpus  is  oriented  towards  speech 
recognition applications, implying that recordings may have 
periods of silence. As these silences are nothing but noise 
for our models (because silence is not speaker-dependent), 
we had the need to produce a voice activity detector (VAD) 
in order to eliminate them.

When choosing an appropriate VAD algorithm, we focused, 
on the one hand, on finding one that had been extensively 

Figure 1: Platform architecture



tried and tested. On the other hand, the algorithm had to 
have  a  low  rate  of  false  negatives,  that  is,  it  should 
privilege conserving speech rather than being overzealous.

After a survey of several algorithms, it was found that the 
voice  activity  detection of  the  3GPP AMR [9]  (adaptive 
multi-rate) speech codec was the most appropriate for our 
purposes.  This  algorithm  is  used  to  reduce  bandwidth 
requirements  in  GSM  and  UMTS  communications,  and 
fulfills our requirements of consistency and low zeal.

2.4. Processing modules

A particular  format  was  established  for  data  exchange 
between modules. We defined a folder hierarchy where the 
type of contained information is specified by an extension 
assignment  code  (for  example,  a  folder  named 
“experiment.worldModel”  would  contain  a  world  model 
for a certain experiment).

Each  hierarchic  entity  (or  package)  contains  a 
configuration file. This file contains in itself all information 
about both previous and current configuration parameters. 
This  self-contained  history  allows  a  straightforward 
administration of the chain of processing events.

A module's  configuration parameters are defined through 
command-line  arguments  in  a  key-value  fashion.   In 
addition, parameter configuration files can be created and 
included to a command's arguments.  When such a file is 
entered through the command-line,  it  is  appended to the 
module's  configuration  and,  therefore,  to  the  affected 
packages'  configuration  files.  This  allows  for  a  quick 
replication  of  parameters  that  extends  the  reach  of  a 
parameter definition or redefinition.

Most  modules  were  structured  in  a  similar  fashion, 
following the aforementioned input/output scheme with its 
corresponding  package  hierarchy.  This  is  illustrated  in 
Figure 1.

As we mentioned, our immediate goal was to provide the 
capability  to  run  a  baseline  experiment.  This  led  to  the 
development of the following modules:

worldModelGen generates  a  world  model  for  those 
modeling  algorithms that  require  the  representation  of  a 
generic  speaker.  This  module  receives  a  selection  of 
recordings  from  the  database  as  input,  and  outputs  a 
.worldModel  package  containing  the  used  configuration 
and a corresponding model file.

clientModelGen generates  a  set  of  client  models,  either 
based  on  a  world  model  or  from  scratch.  The  output 
.clientsModel  package  contains  a  common configuration 
file and separate model files for each client.

normGen generates the normalization information for each 
model in the .clientsModel folder. Both the output folder's 
contents  and  its  extension  depend  on  the  type  of 
normalization.

modelTest tests  every model  against  recordings from the 
same person and from a set of impostors. The results are 

stored in a  folder  with the extension  .testScore,  with two 
files  for  each  model,  one  containing  the  scores  (in  CSV 
format)  coming  from  the  same  person,  and  the  other 
containing the scores from the impostors.

2.5. Score analysis module

The  analysis  of  experimental  results  consists  mainly  in: 
obtaining  probability  distributions  for  client  and  impostor 
scores, determining Tippet [10] curves, DET [11] curves on 
a linear and logarithmic scale, and finally the  equal-error  
rate (EER) [12].

This task is carried out by a module called scoreGraph.

2.6. User interface module

The  platform's  front-end  consists  of  command-line 
executables and an integrated GUI module (Figure 2). On 
the one hand, this means that the platform can be used to the 
full  extent  of  its  potential  because  of  the command-line's 
versatility.  On the  other  hand,  the  user  can  count  with  a 
simple  environment  that  provides  independence  from the 
internal structure of the platform.

Using  the  GUI  module,  a  researcher  can  easily  generate 
experiments,  consult  the  database  and  perform  data 
selection without the need for a deep understanding of the 
SQL language or the intricacies of the platform.

The  module  also  ensures  consistency  in  the  database 
selection. For instance, it validates that no recording is used 
more than once.

3. Archetypal experiment

With  the  purpose  of  exemplifying  the  platform's 
functionality and, at the same time, exhibiting its results, we 
propose an experiment that typifies the speaker verification 
process.

The  proposed  experiment  uses  several  subsets  of  the 

Figure 2: User interface module



SpeechDat  II  corpus.  40  recordings  from  each  of  100 
speakers (on average, 160 seconds per speaker) were used 
to  generate  the  world  model.  For  the  client-impostor 
testing, a body of 50 clients and 50 impostors was used. 
The  client  models  were  trained  with  10  recordings  (on 
average, 40 seconds per speaker) from each client speaker. 
Testing was performed with 20 recordings (on average, 4 
seconds per recording), from both clients and impostors.

The  models  were  constructed  using  39  parameters. 
Instantaneous energy and 12 MFCC coefficients were used 
to generate 13 delta coefficients. Likewise these were used 
to construct 13 delta-delta coefficients.

The world model was built using GMM with  expectation 
maximization (EM). A total of 512 Gaussian functions was 
produced.

The clients were modeled through GMM with a maximum-
a-posteriori (MAP) probability algorithm. The start point 
for this modeling was the world model.

The tests were normalized against the world model.

3.1. Platform configuration

Figures 3 and 4 shows code from the configuration files 
used for the aforementioned experiment.

The flexibility of the whole process is seen in the “include” 
statements. The code demonstrates how database selection 
and  modeling  parameters  can  be  decoupled  from  a 
particular module.

A remarkable  aspect  is  how configurations  are  inherited 
and shared between modules.

If,  for  instance,  a  user  wanted  to  implement  LPC 

coefficient  extraction, all  that should be done is changing 
the  “features”  statement  in  the  configuration  file.  This 
would automatically affect the entire hierarchy. As a result, 
the  generation  of  new experiments  with  variations  in  the 
setup becomes an easy task.

3.2. Results

The results  obtained  from the  experiment  can  be  seen  in 
Figures 5 - 8. At the current stage, the most representative 
parameter to evaluate a platform's performance is the equal 
error  rate.  As  Figure  7  shows,  this  particular  experiment 
resulted in an EER of 13.5%.

These results were compared to NIST SRE08 [13]. It was 
determined  that  the  “Telephone  Speech  In  Training  and 
Test”  SHORT2-10SEC  test  was  the  most  suitable  for 
comparison to our archetype experiment, due to a similarity 
of  conditions.  Tested  platforms  from  NIST  exhibit  EER 
values between 9% and 27%.

However,  the  conditions  for  our  experiment  are  more 
restrictive, since training and testing time for our models is 
shorter. Considering this, an EER of 13.5% is a more than 
acceptable value.

Figure 5: Probability density function

Figure 6: Tippet curve

include = database.conf
include = modeling.conf

# Output
worldModel = world

# Selection
include = selections.conf

# Features
features = mfcc

# Extractor
extractor = htk

# Model
model = gmm

# Trainer
trainer = torch
torch.train.method = MAP
torch.train.EM.numberOfMixtures = 512
torch.train.maxEMIterations = 100
torch.train.maxKMeansIterations = 100

Figure 3: modelWorld.conf for archetypal experiment

Figure 4: modeling.conf for archetypal experiment



4. Conclusions

To  conclude,  a  highly  modular  and  flexible  speaker 
verification platform was produced. It was implemented in 
C++, presenting efficient processing capabilities and a high 
level  of  abstraction.  Starting  from  two  base  classes 
(features and  models),  a  module  structure  was  built 
allowing a versatile manipulation of a relational database 
of  speakers  and speech recordings.  These modules  carry 
out the process of speaker verification using a hierarchic 
package structure as input/output scheme.

To evaluate the  platform's  ability  to  produce meaningful 
results,  an  archetypal  experiment  was  proposed  and 
executed. The obtained results fall between the range seen 
in NIST testings of 2008. Still, they are not top-of-the-line, 
yet  the platform's versatility ensures  that  new techniques 
can easily be designed, implemented and applied in order 
to improve performance. Current work is leading towards 
implementing  SVM  modeling,  SVM  with  GMM  and 
GLDS, MLLR extraction and APE [14] curve generation 
for auto-calibration.

Notwithstanding, these results are not enough to perform a 
solid comparison with other platforms: future work should 
focus on testing with a standardized corpus and producing 
a NIST-compatible output.
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