
SPEAKER VERIFICATION: A FLEXIBLE PLATFORM ARCHITECTURE
FOR EXPERIMENT DESIGN AND EXECUTION

Jorge Prendes, Marc S. Ressl, Roxana Saint-Nom

Grupo de electrónica digital aplicada, ITBA (Instituto Tecnológico de Buenos Aires)

Av. E. Madero 399, Buenos Aires, Argentina

{jprendes,mressl,saintnom}@itba.edu.ar

ABSTRACT
A new speaker verification platform architecture is
introduced. Its design is focused on flexibility and ease of
use, allowing for rapid generation of diverse experimental
configurations. It uses a relational database and a modular
structure that give the platform versatility. An archetypal
experiment using gaussian mixture models with
expectation maximization and maximum a posteriori is
proposed and carried out. The results are within the range
of other platforms' performance. Future work will be
oriented towards support vector machines and
combinations of support vector machines with gaussian
mixture models.

KEY WORDS
Speaker Verification, Platform Architecture, Database,
Data Selection, SQL, GMM, VAD

1. Introduction

Speaker verification is the process of confirming the
validity of a user's claimed identity, using information
extracted from the user's voice.

Several methods are available for this purpose, some of
them being better under certain circumstances. A speaker
verification platform provides the tools to compare the
outcome of different methods, or combination of methods,
in order to minimize the error rate.

Our purpose is to establish a new speaker verification
research laboratory focused on applications in the Spanish
language. Due to the fact that speaker verification
platforms are not publicly available, one of the tasks
towards this goal is the development of a new platform.

A major concern with the design of speaker verification
platforms is the preparation of experiments, as there is an
extensive set of module combinations and recordings from
which to select an appropriate subset. This makes preparing
experiments a tedious and time-consuming task.

As a consequence, our approach to the design of the
platform was focused on providing a flexible and easy to
use environment. Notwithstanding, it is important not to

trade performance for flexibility, so that the time saved in
experiment planning is not wasted on data processing.

These concerns led to a highly modular implementation,
where each module consists of one or several of the
following components: database management, signal
conditioning (voice activity detection), feature extraction
(MFCC, LPC), feature modeling (GMM and GMM+UBM),
normalization (Z-Norm) and score evaluation (likelihood
ratio).

These components were chosen so as to be able to run a
baseline experiment. Such an experiment consists in
generating client models (and, in some cases, a world
model) and performing tests that confront clients to
impostors.

In this paper we shall discuss how modular flexibility and
the use of a relational database can save time and other
resources when preparing experiments and when expanding
the platform's functionalities and algorithms.

2. Platform

2.1. Architecture

The implementation was developed in C++, due to the
language's high processing performance, power of
abstraction, availability of libraries, and easy interfacing
with other programming languages (especially C).

Following the UNIX methodology, modules were devised as
simple stand-alone command-line applications.
Communication among models was implemented using a
folder hierarchy with standardized configuration files.

A common problem while writing applications in C
language is that programmers have to deal with language
issues, and may lose the perspective on the original
problem. To overcome this, a high abstraction layer was
written, providing the basic structures to be connected in
order to develop new modules. This layer consists of a set of
C++ classes. Of these, the two most important are features
and models. They provide dynamic typing to allow for
model and feature changes at run-time. This gives each
module the ability to behave differently depending on an
input configuration file.

Classes define the interface between algorithms and
modules. This interface is defined in such a way that it is as
generic as possible, and all algorithms must follow the
structure that it proposes.

The feature class allows the representation of generic
features, offering methods to extract, store and recall
information in files.

Likewise, the model class helps to represent generic
models, giving enough functionality to train, test, save and
recover models.

Regarding feature extraction, the implementation of mel-
frequency cepstral coefficients (MFCC) and linear
prediction filter coefficients (LPC) was realized using the
HTK library [1]. The Torch3 [2] library was used for
implementing gaussian mixture models (GMM) [3] and
support vector machines (SVM) [4]. Both libraries are
working behind a wrapper that binds them to the proposed
interface.

Matrix and vector algebra was performed using the C++
Boost library [5], due to its high efficiency [6] and level of
abstraction.

2.2. Database

In order to allow the selection of recordings from a speech
corpus, a relational database was created, including all
relevant data for each speaker (e.g. sex, age) and recording
(e.g. environment, handset and duration).

The database was implemented using SQLite [7], an
embedded relational database management system that
uses the SQL language.

We counted with the SpeechDat II corpus, made available to
us through a collaboration agreement with UPM
(Universidad Politécnica de Madrid). This is an annotated
corpus of recordings, where annotations are stored in SAM
label file format [8]. In order to populate our relational
database (which not only provides independence from the
corpus' internal structure but also presents an expanded
range of options for data selection) we produced the module
called databaseGen, that imports all relevant data into the
SQLite environment.

SQLite has a remarkable flexibility in the formulation of
selection statements. It is possible to define limits with
logical expressions in such a way that selections can be
specified by duration and classified according to any desired
characteristic. This gives, for instance, the ability to separate
client model training and test data.

Furthermore, SQLite has a sub-query feature that greatly
enhances data filtering. For example, the amount of results
for a selection of recordings can be limited independently
for each speaker or group of speakers. Moreover, results can
be filtered according to rules specified by other results.

2.3. Voice activity detection

The SpeechDat II corpus is oriented towards speech
recognition applications, implying that recordings may have
periods of silence. As these silences are nothing but noise
for our models (because silence is not speaker-dependent),
we had the need to produce a voice activity detector (VAD)
in order to eliminate them.

When choosing an appropriate VAD algorithm, we focused,
on the one hand, on finding one that had been extensively

Figure 1: Platform architecture

tried and tested. On the other hand, the algorithm had to
have a low rate of false negatives, that is, it should
privilege conserving speech rather than being overzealous.

After a survey of several algorithms, it was found that the
voice activity detection of the 3GPP AMR [9] (adaptive
multi-rate) speech codec was the most appropriate for our
purposes. This algorithm is used to reduce bandwidth
requirements in GSM and UMTS communications, and
fulfills our requirements of consistency and low zeal.

2.4. Processing modules

A particular format was established for data exchange
between modules. We defined a folder hierarchy where the
type of contained information is specified by an extension
assignment code (for example, a folder named
“experiment.worldModel” would contain a world model
for a certain experiment).

Each hierarchic entity (or package) contains a
configuration file. This file contains in itself all information
about both previous and current configuration parameters.
This self-contained history allows a straightforward
administration of the chain of processing events.

A module's configuration parameters are defined through
command-line arguments in a key-value fashion. In
addition, parameter configuration files can be created and
included to a command's arguments. When such a file is
entered through the command-line, it is appended to the
module's configuration and, therefore, to the affected
packages' configuration files. This allows for a quick
replication of parameters that extends the reach of a
parameter definition or redefinition.

Most modules were structured in a similar fashion,
following the aforementioned input/output scheme with its
corresponding package hierarchy. This is illustrated in
Figure 1.

As we mentioned, our immediate goal was to provide the
capability to run a baseline experiment. This led to the
development of the following modules:

worldModelGen generates a world model for those
modeling algorithms that require the representation of a
generic speaker. This module receives a selection of
recordings from the database as input, and outputs a
.worldModel package containing the used configuration
and a corresponding model file.

clientModelGen generates a set of client models, either
based on a world model or from scratch. The output
.clientsModel package contains a common configuration
file and separate model files for each client.

normGen generates the normalization information for each
model in the .clientsModel folder. Both the output folder's
contents and its extension depend on the type of
normalization.

modelTest tests every model against recordings from the
same person and from a set of impostors. The results are

stored in a folder with the extension .testScore, with two
files for each model, one containing the scores (in CSV
format) coming from the same person, and the other
containing the scores from the impostors.

2.5. Score analysis module

The analysis of experimental results consists mainly in:
obtaining probability distributions for client and impostor
scores, determining Tippet [10] curves, DET [11] curves on
a linear and logarithmic scale, and finally the equal-error
rate (EER) [12].

This task is carried out by a module called scoreGraph.

2.6. User interface module

The platform's front-end consists of command-line
executables and an integrated GUI module (Figure 2). On
the one hand, this means that the platform can be used to the
full extent of its potential because of the command-line's
versatility. On the other hand, the user can count with a
simple environment that provides independence from the
internal structure of the platform.

Using the GUI module, a researcher can easily generate
experiments, consult the database and perform data
selection without the need for a deep understanding of the
SQL language or the intricacies of the platform.

The module also ensures consistency in the database
selection. For instance, it validates that no recording is used
more than once.

3. Archetypal experiment

With the purpose of exemplifying the platform's
functionality and, at the same time, exhibiting its results, we
propose an experiment that typifies the speaker verification
process.

The proposed experiment uses several subsets of the

Figure 2: User interface module

SpeechDat II corpus. 40 recordings from each of 100
speakers (on average, 160 seconds per speaker) were used
to generate the world model. For the client-impostor
testing, a body of 50 clients and 50 impostors was used.
The client models were trained with 10 recordings (on
average, 40 seconds per speaker) from each client speaker.
Testing was performed with 20 recordings (on average, 4
seconds per recording), from both clients and impostors.

The models were constructed using 39 parameters.
Instantaneous energy and 12 MFCC coefficients were used
to generate 13 delta coefficients. Likewise these were used
to construct 13 delta-delta coefficients.

The world model was built using GMM with expectation
maximization (EM). A total of 512 Gaussian functions was
produced.

The clients were modeled through GMM with a maximum-
a-posteriori (MAP) probability algorithm. The start point
for this modeling was the world model.

The tests were normalized against the world model.

3.1. Platform configuration

Figures 3 and 4 shows code from the configuration files
used for the aforementioned experiment.

The flexibility of the whole process is seen in the “include”
statements. The code demonstrates how database selection
and modeling parameters can be decoupled from a
particular module.

A remarkable aspect is how configurations are inherited
and shared between modules.

If, for instance, a user wanted to implement LPC

coefficient extraction, all that should be done is changing
the “features” statement in the configuration file. This
would automatically affect the entire hierarchy. As a result,
the generation of new experiments with variations in the
setup becomes an easy task.

3.2. Results

The results obtained from the experiment can be seen in
Figures 5 - 8. At the current stage, the most representative
parameter to evaluate a platform's performance is the equal
error rate. As Figure 7 shows, this particular experiment
resulted in an EER of 13.5%.

These results were compared to NIST SRE08 [13]. It was
determined that the “Telephone Speech In Training and
Test” SHORT2-10SEC test was the most suitable for
comparison to our archetype experiment, due to a similarity
of conditions. Tested platforms from NIST exhibit EER
values between 9% and 27%.

However, the conditions for our experiment are more
restrictive, since training and testing time for our models is
shorter. Considering this, an EER of 13.5% is a more than
acceptable value.

Figure 5: Probability density function

Figure 6: Tippet curve

include = database.conf
include = modeling.conf

Output
worldModel = world

Selection
include = selections.conf

Features
features = mfcc

Extractor
extractor = htk

Model
model = gmm

Trainer
trainer = torch
torch.train.method = MAP
torch.train.EM.numberOfMixtures = 512
torch.train.maxEMIterations = 100
torch.train.maxKMeansIterations = 100

Figure 3: modelWorld.conf for archetypal experiment

Figure 4: modeling.conf for archetypal experiment

4. Conclusions

To conclude, a highly modular and flexible speaker
verification platform was produced. It was implemented in
C++, presenting efficient processing capabilities and a high
level of abstraction. Starting from two base classes
(features and models), a module structure was built
allowing a versatile manipulation of a relational database
of speakers and speech recordings. These modules carry
out the process of speaker verification using a hierarchic
package structure as input/output scheme.

To evaluate the platform's ability to produce meaningful
results, an archetypal experiment was proposed and
executed. The obtained results fall between the range seen
in NIST testings of 2008. Still, they are not top-of-the-line,
yet the platform's versatility ensures that new techniques
can easily be designed, implemented and applied in order
to improve performance. Current work is leading towards
implementing SVM modeling, SVM with GMM and
GLDS, MLLR extraction and APE [14] curve generation
for auto-calibration.

Notwithstanding, these results are not enough to perform a
solid comparison with other platforms: future work should
focus on testing with a standardized corpus and producing
a NIST-compatible output.

References

[1] S. Young, D. Ollason, V. Valtchev, and P. Woodland,
The HTK Book (for HTK Version 3.4) (Cambridge, UK:
Cambridge University Engineering Department, 2006).

[2] R. Collobert, S. Bengio, and J. Mariéthoz, Torch: a
modular machine learning software library. Technical
Report IDIAP-RR 02-46 (Maritgny, CH: IDIAP, 2002).

[3] D.A. Reynolds and R.C. Rose, Robust text-independent
speaker identification using Gaussian mixture speaker
models, IEEE Transactions on Speech and Audio
Processing, 3(1), 1995, 72-83.

[4] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E.
Singer, P. A. Torres-Carrasquillo, Support vector machines
for speaker and language recognition, Computer Speech and
Language, 20(2-3), 2006, 210-229.

[5] uBlas Boost Library, (http://www.boost.org/doc/libs/
1_44_0/libs/numeric/ublas/doc/index.htm).

[6] uBlas Benchmark Results, (http://www.boost.org/doc/
libs/1_44_0/libs/numeric/ublas/doc/overview.htm#7Benchm
arkResults).

[7] SQLite, (http://www.sqlite.org).

[8] A. Fourcin et al. ESPRIT project 2589 (SAM) multi-
lingual speech input/output assessment, methodology and
standardization. Technical Report SAM-UCL-G004, (Sam
Consortium, 1992).

[9] 3GPP, TS 26.071 - AMR speech codec: General
Description, Version 7.0.0, (3GPP, 2007).

[10] C. F. Tippet, The evidential value of the comparison of
paint flakes from sources other than vehicles, Journal of the
Forensic Science Society, 8(2-3), 1968, 61-65.

[11] A. Martin, G. Doddington, T. Kamm, M. Ordowski, M.
Przybocki, The DET curve in assessment of detection task
performance. Proc. Eurospeech '97, Rhodes, GR, 1997, Vol.
4 1899-1904.

[12] Jyh-Min Cheng, Hsiao-Chuan Wang, A method of
estimating the equal error rate for automatic speaker
verification, 2004 International Symposium on Chinese
Spoken Language Processing, Hong Kong, CN, 2004, 285-
288.

[13] National Institute of Standards and Technology, The
2008 NIST speaker recognition evaluation results
(http://www.itl.nist.gov/iad/mig/tests/sre/2008/official_resul
ts/index.html, 2008).

[14] Niko Brümmer A, Johan Du Preez, Corresponding
author Application-Independent Evaluation of Speaker
Detection, Computer Speech & Language, 20(2-3), 2006,
230-275.

Figure 7: Linear DET curve Figure 8: Logarithmic DET curve

